1-7: Learning Goals

- Let's compare parallelograms and triangles.

1-7-1: Same Parallelograms, Different Bases

Here are two copies of a parallelogram. Each copy has one side labeled as the base b and a segment drawn for its corresponding height and labeled h.

1. The base of the parallelogram on the left is 2.4 centimeters; its corresponding height is 1 centimeter. Find its area in square centimeters.
2. The height of the parallelogram on the right is 2 centimeters. How long is the base of that parallelogram? Explain your reasoning.

1-7-2: A Tale of Two Triangles, Part 1

Two polygons are identical if they match up exactly when placed one on top of the other.

1. Draw one line to decompose each of the following polygons into two identical triangles, if possible. Use a straightedge to draw your line.

2. Which quadrilaterals can be decomposed into two identical triangles?

Pause here for a small-group discussion.
3. Study the quadrilaterals that can, in fact, be decomposed into two identical triangles. What do you notice about them? Write a couple of observations about what these quadrilaterals have in common.

1-7-3: A Tale of Two Triangles, Part 2

Your teacher will give your group several pairs of triangles. Each group member should take 1-2 pairs.

1. a. Which pair(s) of triangles do you have?
b. Can each pair be composed into a rectangle? A parallelogram?
2. Discuss with your group your responses to the first question. Then, complete each of the following statements with all, some, or none. Sketch 1-2 examples to illustrate each completed statement.
a. ____ of these pairs
of identical triangles can be composed into a rectangle.
b. \qquad of these pairs of identical triangles can be composed into a parallelogram.

1-7-3: A Tale of Two Triangles, Part 2

1-7: Lesson Synthesis

1-7: Learning Targets

- I can explain the special relationship between a pair of identical triangles and a parallelogram.

1-7-4: A Tale of Two Triangles (Part 3)

1. Here are some quadrilaterals.

a. Circle all quadrilaterals that you think can be decomposed into two identical triangles using only one line.
b. What characteristics do the quadrilaterals that you circled have in common?
2. Here is a right triangle. Show or briefly describe how two copies of it can be composed into a parallelogram.

